
Vera C. Rubin Observatory
Data Management

Rubin-Env Integration with DM Build
Tools

Gabriele Comoretto

DMTN-174

Latest Revision: 2020-12-22

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

Abstract

Impacts on using the rubin-env environment definition from conda-forge in lsstsw
and newinstall.

ii

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

Change Record

Version Date Description Owner name
1 YYYY-MM-

DD
Unreleased. Gabriele Comoretto

Document source location: https://github.com/lsst-dm/dmtn-174

iii

https://github.com/lsst-dm/dmtn-174

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

Contents

1 Introduction 1

2 Historic Scipipe_Conda_Env 1

2.1 Semantic Versioning . 2

3 Rubin-Env Feedstock 2

4 DM Build Tools 2

4.1 Semantic Versioning Limitation . 3

4.2 Ensuring Reproducibility . 3

4.3 Implementation . 3

4.3.1 Lsstsw . 4

4.3.2 Jenkins-Dm-Jobs . 4

5 Future Work 5

A References 5

B Acronyms 6

iv

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

Rubin-Env Integration with DM Build Tools

1 Introduction

This technical note has the main scope to document how we are integrating the new intro-
duced rubin-env environment definition from conda-forge in the tooling currently used in
DM.

In order to have a clear vision, in this topic, a few historic information are given in section
2, Section 3 describes the implementation and management of the rubin-env definition in
conda-forge, while section 4 describes its integration in the DMbuild tools. Finally a fewwords
on possible future improvements.

2 Historic Scipipe_Conda_Env

The Science Pipelines is requiring a set of libraries to be available in the underlying conda
environment. The definition of this environment has been handled until now, end 2020, using
the github project scipipe_conda_env.

Many of these libraries weremanaged as Eups packages as part of the Science Pipelines. They
have been moved out of the science pipelines, as proposed in DMTN-110. This has increased
the size of the environment, bringing a few stability and management issues into the loop.

In order to overcome this instabilities, we moved away from a fully semantic versioning ap-
proach, and defined the environment an exact list of libraries, obtained using:

conda list --explicit

This has the advantage to always relay to a fixed environment but makes it more difficult
to extend it, by the downstream user of the Science Pipelines. Therefore the environment
definition has bene implemented in the rubin-envmeta-package in conda-forge, as described
in section 3.

1

https://github.com/lsst/scipipe_conda_env

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

2.1 Semantic Versioning

Before moving to the description of conda the new rubin-env meta-package, it is important
to clarify the use of Semantic Versioning in DM.

Due to the collaborative nature of the project, it is very important to be able to add packages
to our distributions. This implies the need of using semantic versioning to reduce conflicts.

Semantic versioning should guarantee that no breaking changes are introduced when only
minor or patch releases are done. This permits the environment to include updated fixes on
the resolved libraries, without the need to redefine the environment.

3 Rubin-Env Feedstock

Defining the environment required by the Science Pipelines in a conda-forge meta-package
has multiple benefits. For example, all changes need to follow the conda-forge workflow and
will be tested before making a new version available.

You can refer to the Github repository rubinenv-feedstock for all information and procedures
to follow.

4 DM Build Tools

The tools to be updated in DM in order to switch from scipipe_conda_env to rubin-env are:

• lsstsw

• newinstall

• jenkins-dm-jobs

• ci-scripts

The tool most impacted is lsstsw.

2

https://github.com/conda-forge/rubinenv-feedstock

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

4.1 Semantic Versioning Limitation

In some cases, a minor change in a library resolved by rubin-env, is breaking the usability
of the Science Pipelines code. This implies that given a fixed reference or tag of the Science
Pipelines, build is giving a error and it is not possible to deploy a specific distribution from
source anymore.

The main reason that this may happen is that in some libraries resolved by rubin-env, the
semantic versioning is not followed as it should be. In this case, in order to be able to deploy
from source a specific version version of the Science Pipelines, we need to fix a dependency
in rubin-env, avoiding to semantic versioning for one or more provided libraries.

In other cases, the problem can be in the Science Pipelines code itself. In tis case, it is required
to patch the Science Pipelines

4.2 Ensuring Reproducibility

In order to be able to debut the cases described in the previous section 4.1, it is important to
have available the exact pinned version of the environment used for a specific build.

Also, from an operational point of view, we don’t need the flexibility provided by the seman-
tic versioning, but it is preferable to stick to the same configuration that has been used for
development and validation.

Therefore we need to store the pinned version of the environment used in each build that we
persist.

4.3 Implementation

The adoption of the rubin-envmeta-package is implemented in theDM-27005 ticket branches,
in all four DM build tools.

In the general case, it is sufficient to switch the creation of the environment fromscipipe_conda_env
to the rubin-env definition, and update the reference, that will become the rubin-env version.

3

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

However, in order to be able to persist the exact pinned version used for each build, some
additional changes have to be added.

4.3.1 Lsstsw

Lsstswprovide a few scripts to perform thedeployment, setup andbuild of the Science Pipelines.
In addition there is a script that push to the EUPS_PKGROOT the source Eups packages, for a
specific build.

In order to store and persist also the pinned version of the used environment, a specific env
file is added to the distribution, and pushed together with the source packages.

Source packages are stored in the Eups packages repository in an unstructured way, in the
folder:

\$EUPS_PKGROOT/stack/src

Under the 𝑠𝑟𝑐 folder there are a few subfolders, for example to provide the Eups tags infor-
mation. A new folder env is added under 𝑠𝑟𝑐, where the pinned environment for each build
is stores.

Since the environment may change with the architecture where the build is performed, we
need also to make it persistent for each binary distribution that we persist. See following
subsection 4.3.2.

4.3.2 Jenkins-Dm-Jobs

The tooling used to run continuous integration jobs in principle could be affected just in a very
marginal way by the introduction of the rubin-env meta-package.

However, this set of tooling, includes a large amount of logic that do no belong strictly to
CI. This is the case of the generation and storage of the Eups binaries distributions in the
EUPS_PKGROOT pakages repository.

Eups binary packages are stored in the EUPS_PKGROOT following a folder structure that den-

4

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

des on a few factors, like for example, platform, compiler, or environment reference. For
example:

\$EUPS_PKGROOT/stack/redhat/el8/conda-system/miniconda-py37_4.8.2-cb4e2dc/

All packages producedwith the same setup, will be stored in anunstructuredway in a EUPS_PKGROOT
as described above. Under this root folder, there are a few subfolder, for example, for the
manifests obtained in a build.

In the same way, as previously described for the source packages in the previous subsection
4.3.1, the pinned version of the environment is saved in a specific env subfolder and pushed
to the package repository together with the binary distribution.

5 Future Work

As described in this technical note, the tools have been updated in order to be able to store
the information. However no use of it is done at the moment in a programmatic way.

We should update the deployment tools to be able to resolve a specific environment, when
requested, as an alternative to the default environment.

Also, it should be possible to analyze the environment changes. Making this visible may help
anticipating problems.

A References

[DMTN-110], Comoretto, G., 2019, Conda Environment Proposal for Science Pipelines, DMTN-
110, URL http://dmtn-110.lsst.io

5

http://dmtn-110.lsst.io

Rubin-Env Integration with DM Build Tools DMTN-174 Latest Revision 2020-12-22

B Acronyms

Acronym Description
CI Continuous Integration
DM Data Management
DMTN DM Technical Note

6

	Introduction
	Historic Scipipe_Conda_Env
	Semantic Versioning

	Rubin-Env Feedstock
	DM Build Tools
	Semantic Versioning Limitation
	Ensuring Reproducibility
	Implementation
	Lsstsw
	Jenkins-Dm-Jobs

	Future Work
	References
	Acronyms

